
ALGEBRAIC CURVES
EXERCISE SHEET 2

Exercise 2.1.

(1) Let V be an algebraic set in An(k) and P ∈ An(k) a point not in V . Show
that there is a polynomial F ∈ k[X1, ..., Xn] such that F (Q) = 0 for all
Q ∈ V , but F (P ) = 1.

(2) Let P1, ..., Pr be distinct points in An(k), not in an algebraic set V . Show
that there are polynomials F1, ..., Fr ∈ I(V ) such that Fi(Pj) = 0 if i ̸= j,
and Fi(Pi) = 1.

(3) With P1, ..., Pr and V as in (2),and aij ∈ k for 1 ≤ i, j ≤ r, show that there
are Gi ∈ I(V ) with Gi(Pj) = aij for all i and j.

Solution 1.

(1) As P /∈ V , there exists f ∈ I(V ) such that f(P ) = λ ̸= 0. k is a field so
there exists λ−1 ∈ k such that λ−1f(P ) = 1, so we can choose F := λ−1f ∈
I(V ).

(2) For every 1 ≤ i ≤ r, let Vi be the algebraic set

Vi = V ∪ {P1, . . . , Pi−1, Pi+1, . . . , Pr}

(recall that finite sets and finite unions of algebraic sets are algebraic, see
Exercise 2.3). By point (1), there exists Fi ∈ I(Vi) such that Fi(Pi) = 1.
In particular, we have Fi ∈ I(V ) and Fi(Pj) = 0 for all j ̸= i.

(3) It suffices to combine the Fi’s of the previous question:

Gi :=
r∑

j=1

aijFj.

Exercise 2.2.

(1) Determine which of the following sets are algebraic:
(a) {(x, y) ∈ A2(R) | y = sin(x)}
(b) {(cos(t), sin(t)) ∈ A2(R) | t ∈ R}
(c) {(z, w) ∈ A2(C) | |z|2 + |w|2 = 1}

(2) Show that any algebraic subset of An(R) can be defined by a single poly-
nomial equation. Is the same true for An(C)?

Solution 2.
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(1) (a) V = {(x, y) ∈ A2(R) | y = sin(x)} is not algebraic. If it was, V ∩{y =
0} would be an algebraic set in A1(R) with an infinite number of
(isolated) points (given by x = kπ, k ∈ Z).

(b) {(cos(t), sin(t)) ∈ A2(R) | t ∈ R} = {(x, y) ∈ A2(R) | x2 + y2 = 1}
is clearly algebraic.

(c) V = {(z, w) ∈ A2(C) | |z|2 + |w|2 = 1} is not algebraic. Indeed
V ∩ {z = 0} = {w ∈ A1(C) | |w|2 = 1} is a proper subset with
infinitely many points, so it cannot be algebraic.

(2) Let V be an algebraic set in An(R). R[X1, . . . Xr] is Noetherian so V =
V (f1, . . . , fr) ofr some f1, . . . , fr ∈ R[X1, . . . Xr]. Now it is easy to check
that x ∈ V (f1)∩V (f2) if and only if f1(x)2+f2(x)

2 = 0 using that squares
are always non-negative in R. Thus, f 2

1 + · · ·+ f 2
r = 0 is a single equation

defining V .
It does not work for An(C) since squares can be negative and cancel

each other. More precisely, you can check that V = {0} ∈ A2(C) is an
algebraic space (defined by I(V ) = (X, Y )) but is not cut out by a single
polynomial equation. (This is true in fact for any algebraically closed field)

Exercise 2.3.

Let k be a field and I, J two ideals of k[x1, . . . , xn]. Let a = (a1, . . . , an) ∈ kn.
Recall that I · J = {fg, f ∈ I, g ∈ J}. Show the following assertions:

(1) If I ⊆ J , then V (J) ⊆ V (I).
(2) V (I) ∪ V (J) = V (I · J).
(3) V ({x1 − a1, . . . , xn − an}) = {a}.

Solution 3.

(1) Suppose x ∈ V (J) then f(x) = 0 ∀f ∈ J . Using I ⊆ J , we get f(x) =
0 ∀f ∈ I Therefore x ∈ V (I).

(2) Set I ′ = {f ∈ k[x1, . . . , xn] | f(x) = 0 ∀x ∈ V (I) ∪ V (J)}. Clearly if
f ∈ IJ ⊆ I ∩ J , it follows that f ∈ I ′.

Conversely, if x ∈ V (IJ), let f = fIfJ ∈ IJ with fI ∈ I and fJ ∈ J .
f(x) = 0 so either fI = 0 or fJ = 0. Suppose that fI ̸= 0, then ∀g ∈
J, fI(x)g(x) = 0 so x ∈ V (J). The argument is symmetric so we get that
x ∈ V (J) or x ∈ V (I).

(3) Clearly a ∈ V ({x1−a1, . . . , xn−an}). Conversely, x ∈ V ({x1−a1, . . . , xn−
an}) satisfies xi = ai for all i, so x = a.

Exercise 2.4.
2



Let V ⊆ An
k and W ⊆ Am

k be algebraic sets. Show that the following set is an
algebraic subset of Am+n

k :

V ×W = {(a1, . . . , an, b1, . . . , bm) ∈ Am+n
k | (a1, . . . , an) ∈ V, (b1, . . . , bm) ∈ W}

Solution 4.

We label the variables such that IV ⊂ k[X1, . . . , Xn] and IW ⊂ k[Xn+1, . . . , Xn+m].
We can view k[X1, . . . , Xn] and k[Xn+1, . . . , Xn+m] as subrings of k[X1, . . . , Xn+m],
and so we can also consider IV and IW as subsets of k[X1, . . . , Xn+m]. Then the
following ideal of k[X1, . . . , Xn+m] defines the algebraic set V ×W .

IV×W = IV · k[X1, . . . , Xn+m] + IW · k[X1, . . . , Xn+m].

That is, the ideal generated by (the images of) IV and IW inside k[X1, . . . , Xn+m].
Indeed, if (a, b) ∈ V × W , then for any f ∈ IV and g ∈ IW , viewed as elements
of k[X1, . . . , Xn+m], we have f(a, b) = 0 and g(a, b) = 0. Therefore, (a, b) is in
the vanishing locus of (the ideal generated by) IV and IW viewed as subsets of
k[X1, . . . , Xn+m], i.e. (a, b) ∈ V (IV×W ), and thus V ×W ⊆ V (IV×W )

On the other hand, suppose that (a, b) ∈ V (IV×W ). Then if f ∈ IV and g ∈ IW
are arbitrary, we have

0 = f
↑

viewed as element of k[X1, . . . , Xn+m]

(a, b) = f
↑

viewed as element of k[X1, . . . , Xn]

(a)

and

0 = g
↑

viewed as element of k[X1, . . . , Xn+m]

(a, b) = g
↑

viewed as element of k[Xn+1, . . . , Xn+m]

(b).

As f ∈ IV and g ∈ IW were arbitrary, we obtain a ∈ V and b ∈ W , so that
(a, b) ∈ V × W . Hence we conclude also V (IV×W ) ⊆ V × W , so that in fact
V (IV×W ) = V ×W .

Exercise 2.5.

A ring is called local if it has a unique maximal ideal. Let k be an algebraically
closed field.

(1) Let I ⊆ R = k[x1, . . . , xn] be an ideal such that V (I) is a point. Show
that R/I is a finite-dimensional local algebra and that the elements of the
maximal ideal are nilpotent.

(2) Let I ⊆ R = k[x1, . . . , xn] be a radical ideal such that V (I) is a finite set of
r points. Show that R/I ≃ k × . . .× k, with r copies of k in the product.
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(Hint: consider the intersection of maximal ideals containing I and use the
chinese remainder theorem).

Solution 5.

(1) • R/I local: by Nullstellensatz, points in V (I) are in one-to-one corre-
spondence with maximal ideals in R/I.

• Let n be the maximal ideal of R/I. The elements of n are nilpotent.
Indeed,

√
I = m is a maximal ideal in R. Then, for all f ∈ m,

there is n ∈ N, fn ∈ I. We can conclude using the quotient map
π : R −→ R/I and n = π(m).

• R/I is a finite dimensional algebra. You can check that there is N ∈ N
such that mN ⊆ I (using the fact that m is finitely generated and
the pigeonhole principle). Now R/mN ↠ R/I and R/mN is finite
dimensional as a k−vector space. Indeed, one can always choose r
linear generators f1, . . . , fr for m (of the form xi − ai). Then a basis
is given by

{
∏

i1,...,in

fi1 . . . fin | n < N}

where the empty product is 1.
An example to have in mind is the following: R = k[x, y], I = (x, y2).

V (I) = (0, 0) ∈ A2
k. In this case, m = (x, y), m2 = (x2, xy, y2) and

m ⊃ I ⊃ m2. As a k−vector space,

R/m2 ≃ k · 1⊕ k · x⊕ k · y
whereas

R/I ≃ k · 1⊕ k · y.
(2) If V (I) is a point (a1, . . . , an) and I radical, then I = ma = (x1−a1, . . . , xn−

an) maximal. Using Exercise 2.3, part (2), we get that if V (I) is a finite set
of points {y1, . . . , yk} with I radical, I is the product of the corresponding
maximal ideals. They are always pairwise coprime, so we can use the
chinese remainder theorem to get the desired isomorphism, knowing that
for all myi there is an isomorphism R/myi ≃ k.

Exercise 2.6.

Let k be an algebraically closed field and V = {p1, . . . , pr} ⊆ An
k a finite algebraic

set. We call ai, 1 ≤ i ≤ s the distinct first coordinates of p1, . . . , pr. Consider the
finite varieties Vi = {(x2, . . . , xn) ∈ An−1 | (ai, x2, . . . , xn) ∈ V } ⊆ An−1.

(1) Assume that each Vi is the zero locus of N polynomials fi,1, . . . , fi,N for
some N ≥ 1. Show that there exist polynomials gk, 1 ≤ k ≤ N such that
gk(ai, x2, . . . , xn) = fi,k.
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(2) Show that V is the zero locus of n polynomials in k[x1, . . . , xn]. (Hint:
reason by induction on n)

(3) Show that I(V ) is generated by n polynomials. (Hint: using the previous
exercise, I(V ) is characterized by k[x1, . . . , xn]/I(V ) ≃ k × . . .× k)

Solution 6. Note that i ranges from 1 to s ≤ r, because we consider only the
distinct first coordinates of our set of r points.

(1) It suffices to set

gk(x1, . . . , xn) :=
s∑

i=1

fi,k(x2, . . . , xn)

∏
j ̸=i(x1 − aj)∏
j ̸=i(ai − aj)

.

(2) We use induction. For the base case, V = {p1, . . . , pr} ⊆ A1
k so V is the

zero locus of f1 =
∏r

i=1(x− pi).
Induction step: suppose each Vi is the zero locus of n − 1 polynomials

fi,n−1, . . . , fi,n−1. We can consider the set of {g1, . . . , gn−1} of question (1)
together with

gn :=
s∏

i=1

(x1 − ai).

We can check that V is the zero set of {g1, . . . , gn}.
(3) Let us refine the proof of point (2) to obtain this stronger statement. So as

in (2), we proceed by induction on n: if n = 1, then V = {p1, . . . , pr} ⊆ A1
k,

so I(V ) = (
∏r

i=1(x − pi)) (the generator has only simple roots, so this is
indeed a radical ideal). For the induction step, suppose that for all i we
have I(Vi) = (fi,1, . . . , fi,n−1) for some fi,1, . . . , fi,n−1 ∈ k[x2, . . . , xn]. As
in (2), we use (1) to produce polynomials g1, . . . , gn−1 ∈ k[x1, . . . , xn] with
the property that gk(ai, x2, . . . , xn) = fi,k for all i, k, and we also pose gn =∏s

i=1(x1 − ai). We now aim to show that I(V ) = (g1, . . . , gn). Note that
g1, . . . , gn ∈ I(V ), so it remains to prove that I(V ) ⊆ (g1, . . . , gn). To do so,
let f ∈ I(V ) be arbitrary. Then for any i, we have f(ai, x2, . . . , xn) ∈ I(Vi),
and thus by induction hypothesis, there exist ri,1, . . . , ri,n−1 ∈ k[x2, . . . , xn]
such that

f(ai, x2, . . . , xn) =
n−1∑
k=1

ri,kfi,k

as polynomials in k[x2, . . . , xn]. By point (1), there exist polynomials
s1, . . . , sn−1 ∈ k[x1, . . . , xn] such that for all i, k we have sk(ai, x2, . . . , xn) =
ri,k. Let us consider the polynomial h =

∑n−1
k=1 skgk. By construction, we
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have

h(ai, x2, . . . , xn) =
n−1∑
k=1

sk(ai, x2, . . . , xn)gk(ai, x2, . . . , xn)

=
n∑

k=1

rk,ifk,i = f(ai, x2, . . . , xn).

for all i. Therefore, if we write

f =
∑

I=(i2,...,in)∈Zn−1
≥0

FI · xi2
2 · · ·xin

n and h =
∑

I=(i2,...,in)∈Zn−1
≥0

HI · xi2
2 · · · xin

n

for some FI , HI ∈ k[x1], we obtain that FI(ai) = HI(ai) for all I and
i. Note that the ideal of {a1, . . . , as} ⊆ A1

k is given by I({a1, . . . , as}) =
(gn) ⊆ k[x1] by the proof for the case n = 1. As FI −HI ∈ I({a1, . . . , as}),
we obtain that there exists qI ∈ k[x1] such that

FI −HI = qI · gn
for all I ∈ Zn−1

≥0 . Thus, we obtain

f =
∑

I=(i2,...,in)∈Zn−1
≥0

FI · xi2
2 · · · xin

n =
∑

I=(i2,...,in)∈Zn−1
≥0

(HI + qI · gn) · xi2
2 · · ·xin

n

= h+

 ∑
I=(i2,...,in)∈Zn−1

≥0

qI · xi2
2 · · ·xin

n

 · gn.

As h =
∑n−1

k=1 skgk by definition, we obtain f ∈ (g1, . . . , gn). As f ∈ I(V )
was arbitrary, we conclude that f ∈ I(V ), so the proof is complete.
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